Semantic Web Tools and Technologies within Disaster Management

Dr David A McMeekin, Curtin University

We ask Siri or Alexa where are we – we get an answer. We ask: what the weather is like here today – we get an answer. We ask where should be evacuated next – we get the answer I don’t have an opinion on that.
This interactive technical tutorial will demonstrate the use of semantic concepts
and technologies, what they are and how they may be used in bringing together disparate datasets in an emergency situation.
The tutorial will provide participants with an introductory understanding of what and how semantic web technologies may be used and possible benefits of their implementation within disaster situations.
Perhaps, after this tutorial Siri, Alexa Google Assist will be able to answer that final question.

Structure-from-Motion Photogrammetry

Prof. Clive S. Fraser, University of Melbourne

Structure-from-Motion (SfM) Photogrammetry has emerged over the past decade or so as a significant methodological advance in photogrammetric practice. Over this same period, we have consequently witnessed a substantial increase in the adoption of automated photogrammetric orientation and 3D object/scene reconstruction across an ever-broadening range of applications. This has occurred not only in traditional topographic mapping, but also in 3D measurement and modelling in architecture, archaeology, heritage recording, engineering, construction and even the movie industry. One rapidly developing area of application, which has given considerable impetus to the adoption of SfM, is photogrammetric measurement from imagery recorded by drones/UAVs. All stages of SfM photogrammetry will be covered in this workshop, from design considerations for multi-image network configurations, through interior and exterior orientation, to 3D point cloud and image-derived product generation via dense image matching (DIM). Although DIM is not, strictly speaking, a component of SfM-based orientation, the process is typically implied in the term SfM photogrammetry. Special attention will be given to the topics of network orientation constraints, namely camera station and object space control (eg ground control points) and camera calibration. Also, aspects of product quality, accuracy and reliability will be covered, and examples of SfM photogrammetry applied in disaster management will be reviewed.  Attendees will gain increased awareness of, and useful practical insights into SfM photogrammetry, and they will better appreciate the considerations needed when utilising ‘black box’ commercial SfM software systems for fully automatic generation of 3D point clouds, DEMs, orthoimage maps and 3D reality meshes, especially if they are users of, but non-specialists in, photogrammetry.

Bruce Forster (SSSI) Asia-Pacific Remote Sensing Pty Ltd

Introduction to Radar Remote Sensing – One Day Short Course

This introductory course on radar remote sensing is mainly for beginners but may suit those with an intermediate background in remote sensing but little experience in radar remote sensing. The course will cover the following topic headings:

  • Overview of radar theory and applications – systems, geometry, wavelengths, surface scattering mechanisms and dielectric properties, radar polarisation.
  • Fundamental radar concepts – radar resolution, radar equation, SAR image formation.
  • Basic geometry – beam width, relief displacement, foreshortening and layover, shadowing, radargrammetry.
  • Scattering mechanisms – Rayleigh’s theorem, surface roughness, surface, volume and hard target scattering.
  • Introduction to image classification and geometric correction – pixel and area classification, filtering and speckle suppression, simple affine geometric transformation.
  • Polarimetric SAR – choice of polarisation, Stokes vector, polarisation signatures, application of polarimetry.

Creating Location-based Augmented Reality Apps with Unity and Mapbox

In the last decade, personal devices become critical for informing, alerting and guiding the general public in extreme or dangerous situations. Therefore the importance of appropriate visuals and tools for communication is growing. Recent advanced in 3D geospatial modelling and visualisation allow for attractive and user-friendly AR interfaces and experiences. This tutorial will teach you how to create your first AR application based on real 3D data for a specific location. First, the tutorial will give you the state-of-art overview on technology for AR and 3D data visualisation. You will learn how to build interactions and explorations with 3D worlds using Mapbox and Unity game engine. Then you will create your own AR app. You will be able to create and customise a map in Mapbox Studio and bring it into Unity to define logic for interaction. You will learn the basics of Unity and the way to work with 3D data, i.e. how you can bring your external 3D data into Unity to visualise it your AR app. The tutorial will also guide you how to place POIs with real geographical locations on a 3D map and interact with them considering the GPS on your phone.